AI FOR R&D AND MANUFACTURING

Wojciech Matusik MIT

Why AI for R&D and Manufacturing?

- Automatically evaluate many more designs than a human can do manually
 - Accelerate product design process
 - Reduce R&D costs
 - Generate higher performing products
- Provide a layer of intelligence for manufacturing processes
 - Automatically tune manufacturing process
 - Improve yield and accuracy
 - Predict and schedule maintenance

Design Space

- A family of designs representing a given category
- Examples of a design space
 - a parametric design in CAD
 - all possible polyacrylate polymers
 - concentration of components in a formulation

Performance Space

- Range of material properties
- Ashby/material property charts

From Design to Performance

 Numerical simulations (or real experiments) map a point in design space to a point in performance space

Inverse Design

Inverse problem is much more difficult

Inverse Design Involves Search

Al-based Computational Design

Combined AI Forward and Inverse

- Numerical simulation does not exist (or it is very slow to compute)
- □ We can make samples (e.g., materials) and measure their properties
- Samples are made sequentially or in batches
- How to select which samples to evaluate? $\mathbb{R}^{D} \qquad F \qquad \mathbb{R}^{P} \qquad f(x)$ $\mathbb{R}^{D} \qquad \mathbb{R}^{D} \qquad \mathbb{R}^{D} \qquad \mathbb{R}^{P} \qquad \mathbb{R}^$

Surrogate model

Fit GPs for each objective f_j

Observations --- Mean Uncertainty

Results

Optimal Experiment Design Platform

Open-source
Easy-to-use GUI
Built-in visualization
Human-in-the-loop optimization

https://www.autooed.org/

Al-based Design Workflow

Representing Designs using Graphs

Molecule

3D Shape

Representing Design Space

Use a dataset of materials to generate more materials in each class

- Examples: molecules, engineered materials, batteries, ...
- Generative model is required to construct a search space for computational design

A Key Challenge for Molecular Design

Literature provides only tens of examples for specific classes of molecules

Deep Learning Solutions

- Feed-forward neural network learns to copy input to output
- Encoder maps input to code
- Decoder maps code to reconstruction of original input
- Autoencoder, Variational Autoencoder (VAE), Generative Adversarial Network (GAN) require large amount of data (10K+)

Symbolic Generative Models

- Designs are represented as a custom symbolic language called grammar
- Much more data efficient compared to deep learning
- Symbolic grammars are explainable

Graph Grammar

Learning Symbolic Generative Model

We use **bottom-up search** to automatically generate the grammar

General Pipeline of Computational Design

Similarity Metric for Designs

Graph Grammar

Grammar-induced Geometry

Molecular Property Prediction

Graph Neural Diffusion

[Chamberlain et al. 2021]

Results

Why AI for R&D and Manufacturing?

- Automatically evaluate many more designs than a human can do manually
 - Accelerate product design process
 - Reduce R&D costs
 - Generate higher performing products

Provide a layer of intelligence for manufacturing processes

- Automatically tune manufacturing process
- Improve yield and accuracy
- Predict and schedule maintenance

Sensing for Manufacturing

Reconstructed Top-down View

Control for Manufacturing

- AM is prone to random changes in materials and process
- AM lacks closed-loop control limiting accuracy
- Controllers are hand designed and use no (or limited) sensing

Manufacturing with Control Policy

Learning to Control for Manufacturing

- Reinforcement learning (RL) emerges as a promising methods to optimize control in robotics
- RL requires real-time observations/sensing of the environment
- RL requires lots of training data (e.g., 100K experiments)
- High-performance RL controllers can beat human-designed controllers

Process Simulation

- □ 3D printer simulation
 - Particle based simulation
 - □ Simulates in real-time
 - Easily parallelizable making training possible in short period of time.

Training Robust Control Policy

Control Transferred to Real System

Process is Robust to Material Changes

Vision Controlled Jetting (VCJ) unlocks highprecision 3DP with functional materials at scale

Adaptive 3D Vision Process Control Unlocks **High Accuracy and Precision**

Non-contact Process Unlocks Functional End-Use Materials

VCJ Enables End Use Materials

Titan Tough Epoxy 75

Rigid, durable general use material

Titan Tough Epoxy 85 New material available end of year Featuring higher elongation and HDT Vulcan Soft Elastomer 30

Soft, elastomeric material with good elongation and rebound

Titan Chem Epoxy

Chemical resistant material with high heat deflection temperature

Vulcan Soft Elastomer 50

New material available end of year Featuring a durometer of Shore 50A

VCJ Enables True Production Additive Manufacturing

HIGH THROUGHPUT

HIGH PERFORMANCE MATERIALS

CAPABILITY

Summary and Outlook

- Al methods in materials science and manufacturing are here to stay
- Al can be used in many different problem domains
- Al can be used for different components of the design workflow
- Lack of data, highly proprietary nature of data are the main roadblocks
- Growing commercial deployment

