
AI FOR R&D AND MANUFACTURING

Wojciech Matusik
MIT



 Automatically evaluate many more designs than a human can
do manually
 Accelerate product design process
 Reduce R&D costs
 Generate higher performing products

 Provide a layer of intelligence for manufacturing processes
 Automatically tune manufacturing process
 Improve yield and accuracy
 Predict and schedule maintenance 

Why AI for R&D and Manufacturing?



Design Space
 A family of designs representing a given category
 Examples of a design space

 a parametric design in CAD
 all possible polyacrylate polymers
 concentration of components in a formulation



Performance Space
 Range of material properties
 Ashby/material property charts



From Design to Performance
 Numerical simulations (or real experiments) map a point in design space to 

a point in performance space
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Inverse Design
 Inverse problem is much more difficult
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Inverse Design Involves Search

Update Design 
Variables Simulate

Compare to Goal

Good?

Stop

Initial Guess



AI-based Computational Design
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Combined AI Forward and Inverse
 Numerical simulation does not exist (or it is very slow to compute)
 We can make samples (e.g., materials) and measure their properties
 Samples are made sequentially or in batches
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 Numerical simulation does not exist (or it is very slow to compute)
 We can make samples (e.g., materials) and measure their properties
 Samples are made sequentially or in batches

 How to select which 
samples to evaluate?



3D printing

Discovery of Optimal Formulations
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3D printing

Discovery of Optimal Formulations



Multi-objective Bayesian Optimization
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Multi-objective Bayesian Optimization
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Multi-objective Bayesian Optimization
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Multi-objective Bayesian Optimization
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Multi-objective Bayesian Optimization
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Results



Optimal Experiment Design Platform
 Open-source
 Easy-to-use GUI 
 Built-in visualization
 Human-in-the-loop  
optimization

https://www.autooed.org/

https://www.autooed.org/


AI-based Design Workflow
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Representing Designs using Graphs
Molecule Meta-Material 3D Shape



Representing Design Space
 Use a dataset of materials to generate more materials in each class

 Examples: molecules, engineered materials, batteries, … 

 Generative model is required to construct a search space for computational 
design 



A Key Challenge for Molecular Design
 Literature provides only tens of examples for specific classes of 

molecules



Deep Learning Solutions
 Feed-forward neural network learns to copy input to output 
 Encoder maps input to code
 Decoder maps code to reconstruction of original input
 Autoencoder,  Variational Autoencoder (VAE), Generative Adversarial Network 

(GAN) require large amount of data (10K+)



Symbolic Generative Models
 Designs are represented as a custom symbolic language called grammar
 Much more data efficient compared to deep learning
 Symbolic grammars are explainable



Graph Grammar

Training Dataset

DEG [Guo et al. ICLR 2022]
(∼20 training samples)

Non-terminal Nodes

Terminal Nodes

Production Rules



Learning Symbolic Generative Model

 We use bottom-up search to automatically generate the grammar

Input design
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General Pipeline of Computational Design

Generative 
Model

. . .

Performance 
Evaluator

. . .

PerformanceGenerated Samples



Similarity Metric for Designs

Grammar-induced GeometryGraph Grammar



Molecular Property Prediction

Graph Neural Diffusion

0.40 0.53 0.63

[Chamberlain et al. 2021]



Results
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 Automatically evaluate many more designs than a human can
do manually
 Accelerate product design process
 Reduce R&D costs
 Generate higher performing products

 Provide a layer of intelligence for manufacturing processes
 Automatically tune manufacturing process
 Improve yield and accuracy
 Predict and schedule maintenance 

Why AI for R&D and Manufacturing?



Backlit Build Platform
Left Camera

Right Camera

Reconstructed 
Top-down ViewSensing for Manufacturing



Random Variation

Control for Manufacturing

 AM is prone to random changes
in materials and process

 AM lacks closed-loop control 
limiting accuracy

 Controllers are hand designed 
and use no (or limited) sensing

1 2 3

4 5 6

7 8 9



3D Printing Process

Current State

Desired Target Nozzle Path

Updated 
Path & Velocity

Control Policy

3D 
Printer

Manufacturing with Control Policy



Learning to Control for Manufacturing

 Reinforcement learning (RL) emerges 
as a promising methods to optimize 
control in robotics

 RL requires real-time 
observations/sensing of the 
environment

 RL requires lots of training data (e.g., 
100K experiments) 

 High-performance RL controllers can 
beat human-designed controllers



Process Simulation

 3D printer simulation
 Particle based simulation 
 Simulates in real-time
 Easily parallelizable making training 

possible in short period of time. 

3D Printing Simulation



Training Environment3D Printing Geometry 
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3D Printing Process

Current State
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Inkbit Vista Walkthrough



Vision Controlled Jetting (VCJ) unlocks high-
precision 3DP with functional materials at scale

Adaptive 3D Vision Process 
Control Unlocks High Accuracy 
and Precision
Non-contact Process Unlocks 
Functional End-Use Materials



VCJ Enables End Use Materials
Vulcan Soft Elastomer 30

Soft, elastomeric material with good 
elongation and rebound

Titan Chem Epoxy

Chemical resistant material with high 
heat deflection temperature

Titan Tough Epoxy 75

Rigid, durable general use material

Titan Tough Epoxy 85
New material available end of year 

Featuring higher elongation and HDT

Vulcan Soft Elastomer 50
New material available end of year 

Featuring a durometer of Shore 50A



VCJ Enables True Production Additive Manufacturing

HIGH 
THROUGHPUT

LOW
LABOR

HIGH PERFORMANCE 
MATERIALS

ACCURATE AND 
PRECISE PARTS

MULTI-MATERIAL
CAPABILITY



Summary and Outlook
 AI methods in materials science and manufacturing are here to stay
 AI can be used in many different problem domains
 AI can be used for different components of the design workflow
 Lack of data, highly proprietary nature of data are the main roadblocks 
 Growing commercial deployment
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