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Why Al for R&D and Manufacturing?

o Automatically evaluate many more designs than a human can
do manually

o Accelerate product design process
o Reduce R&D costs
o Generate higher performing products

o Provide a layer of intelligence for manufacturing processes
o Automatically tune manufacturing process
o Improve yield and accuracy
o Predict and schedule maintenance



Design Space

o A family of designs representing a given category

o Examples of a design space
o a parametric design in CAD
o all possible polyacrylate polymers
o concentration of components in a formulation

Design space variables
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Performance Space

o Range of material properties
o Ashby/material property charts
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From Design to Performance

o Numerical simulations (or real experiments) map a point in design space to
a point in performance space

RP RP
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Inverse Design

o Inverse problem is much more difficult
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Inverse Design Involves Search

Initial Guess

Update Design |li8 .‘

Compare to Goal
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Al-based Computational Design
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Combined Al Forward and Inverse

Numerical simulation does not exist (or it is very slow to compute)
We can make samples (e.g., materials) and measure their properties
Samples are made sequentially or in batches

How to select which RP F RP
samples to evaluate? T
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Discovery of Optimal Formulations



Discovery of Optimal Formulations

Fomulation Mixing .




Discovery of Optimal Formulations

Fomulation Mixing

Sample Fabrication
e 3D printing



Discovery of Optimal Formulations

Performance Testing
Fomulation Mixing

Sample Fabrication
e 3D printing



Discovery of Optimal Formulations
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Multi-objective Bayesian Optimization

Surrogate model

Fit GPs for each objective fj

3]
‘ :
:| o8 . ¢
.. 8
~
| A ®e ® «
’
R[5 & ¢ 2
\ i b ’
g."qo 4 o ‘\' ,'- ------ N ,I’ (]
/ S o \' ’
’ == .
7 ‘ Y ”,
‘\\ 4
11 @ ® < @
'y
2_
P o
}

T T T T T
2.0 -1.5 -1.0 —0.5 0.0 0.5 1.0

@ Observations --- Mean Uncertainty



Multi-objective Bayesian Optimization

Surrogate model — Acquisition function

Fit GPs for each objective f; Approximate functions fi
from mean of GPs
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Multi-objective Bayesian Optimization

Surrogate model

Fit GPs for each objective f;j
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Acquisition function

Approximate functions f;
from mean of GPs
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Approximate Pareto set
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Multi-objective Bayesian Optimization

d

Surrogate model — Acquisition function
Fit GPs for each objective f; Approximate functions f;
from mean of GPs
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Multi-objective Bayesian Optimization
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Surrogate model — Acquisition function
Fit GPs for each objective f; Approximate functions f;
from mean of GPs
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Results

Compression modulus (MPa)
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imal Experiment Design Platform

Performance Space
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https://www.autooed.org/

Al-based Design Workflow
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Representing Designs using Graphs

Molecule Meta-Material 3D Shape




Representing Design Space

o Use a dataset of materials to generate more materials in each class
o Examples: molecules, engineered materials, batteries, ...

o Generative model is requwed to construct a search space for computational
design A
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A Key Challenge for Molecular Design

o Literature provides only tens of examples for specific classes of
molecules
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Deep Learning Solutions

Feed-forward neural network learns to copy input to output

Encoder maps input to code
Decoder maps code to reconstruction of original input

Autoencoder, Variational Autoencoder (VAE), Generative Adversarial Network
(GAN) require large amount of data (10K+)

O O O 0O




Symbolic Generative Models

o Designs are represented as a custom symbolic language called grammar
o Much more data efficient compared to deep learning
o Symbolic grammars are explainable
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Graph Grammar
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Learning Symbolic Generative Model

o We use bottom-up search to automatically generate the grammar

Grammar

Bottom-up
search

Input design



General Pipeline of Computational Design
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Similarity Metric for Designs
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Molecular Property Prediction

Graph Neural Diffusion
[Chamberlain et al. 2021]



Results
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Why Al for R&D and Manufacturing?

o Automatically evaluate many more designs than a human can
do manually

o Accelerate product design process
o Reduce R&D costs
o Generate higher performing products

0 Provide a layer of intelligence for manufacturing processes
o Automatically tune manufacturing process
o Improve yield and accuracy
o Predict and schedule maintenance



Reconstructed

Sensing for Manufacturing Top-down View




Control for Manufacturing
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Manufacturing with Control Policy
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Learning to Control for Manufacturing

o Reinforcement learning (RL) emerges
as a promising methods to optimize
control in robotics

o RL requires real-time
observations/sensing of the
environment

o RL requires lots of training data (e.g.,
100K experiments)

o High-performance RL controllers can
beat human-designed controllers

Reward

Action

. Environment




Process Simulation

0 3D printer simulation
a Particle based simulation

3D Printing Simulation

QO Simulates in real-time

Q Easily parallelizable making training
possible in short period of time.

Nozzle

Material
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Training Robust Control Policy

3D Printing Geometry

Training Set .
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Control Transferred to Real System
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Material Viscosity

Process is Robust to Material Changes

Baseline

Baseline

Ours

Baseline

Ours

Low Viscosity Material

] Baseline 1 Ours
n M
M Underdeposition | M Overdeposition

High Viscosity Material
] Baseline ¥ Ours

o |
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Vision Controlled Jetting (VCJ) unlocks high-
precision 3DP with functional materials at scale

OOOOOOOOOOOOOOOOOOOOOO

Adaptive 3D Vision Process

Control Unlocks High Accuracy
and Precision

Non-contact Process Unlocks
Functional End-Use Materials




VCJ Enables End Use Materials

Titan Tough Epoxy 75 Vulcan Soft Elastomer 30 Titan Chem Epoxy
Rigid, durable general use material Soft, elastomgric material with good Chemical resista.nt material with high
elongation and rebound heat deflection temperature

Titan Tough Epoxy 85 Vulcan Soft Elastomer 50

New material available end of year New material available end of year
Featuring higher elongation and HDT Featuring a durometer of Shore 50A



VCJ Enables True Production Additive Manufacturing

9 Lt /

HIGH LOW ACCURATE AND
THROUGHPUT LABOR PRECISE PARTS

HIGH PERFORMANCE MULTI-MATERIAL
MATERIALS CAPABILITY




Summary and Outlook

Al methods in materials science and manufacturing are here to stay
Al can be used in many different problem domains

Al can be used for different components of the design workflow
Lack of data, highly proprietary nature of data are the main roadblocks

O O O O 0O

Growing commercial deployment
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