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Processing at “Edge” instead of the “Cloud”

Communication Privacy Latency
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Computing Challenge for Self-Driving Cars

(Feb 2018)

Cameras and radar generate 
~6 gigabytes of data every 30 seconds. 

Generates wasted heat and some 
prototypes need water-cooling!
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Self-driving car prototypes use 
approximately 2,500 Watts of 

computing power.



Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
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Transistors Are Not Getting More Efficient
Slowdown of Moore’s Law and Dennard Scaling 

General purpose microprocessors not getting faster or more efficient 

Need specialized hardware for significant 
improvements in speed and energy efficiency
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Slowdown



Energy-Efficient AI with Cross-Layer Design

Architectures

Algorithms Systems

Circuits
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Power Dominated by Data Movement
Operation: Energy 

(pJ)

8b Add 0.03

16b Add 0.05

32b Add 0.1

16b FP Add 0.4

32b FP Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FP Mult 1.1

32b FP Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

Area 
(µm2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

Memory access is orders of magnitude higher energy than compute
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Autonomous Navigation Uses a Lot of Data

Geometric Understanding

- Growing map size

[Pire, RAS 2017] 

2 million pixels 10x-100x more pixels

Semantic Understanding

- High frame rate
- Large resolutions
- Data expansion
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Visual-Inertial Localization

Visual-Inertial 
Odometry 

(VIO) 

Localization 

Mapping 

Image sequence 

IMU 
Inertial Measurement Unit 

… 

*Subset of SLAM algorithm 
(Simultaneous Localization And Mapping) Slide 28 

Determines location/orientation of robot from images and IMU
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Localization at under 25 mW

[Zhang et al., RSS 2017], [Suleiman et al., VLSI 2018]

Consumes 684× and 1582×
less energy than 

mobile and desktop CPUs, 
respectively

First chip that performs 
complete Visual-Inertial Odometry 

[Joint work with Sertac Karaman (AeroAstro)]

Navion

Front-End for camera 
(Feature detection, tracking, and 

outlier elimination)

Front-End for IMU 
(pre-integration of accelerometer 

and gyroscope data)

Back-End Optimization of Pose 
Graph
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http://navion.mit.edu

http://navion.mit.edu/


Key Methods to Reduce Data Size

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States

Shared 
Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic

IMU 
memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Apply Low 
Cost 

Frame
Compression

Use compression and exploit sparsity to 
reduce memory down to 854kB

[Suleiman et al., VLSI 2018]

Exploit 
Sparsity in 
Graph and 

Linear Solver

Navion: Fully integrated system – no off-chip processing or storage 
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Best Student Paper Award



12 Deep Neural Networks

Computer Vision Speech Recognition

Game Play Medical

Deep Neural Networks (DNNs) have become a cornerstone of AI



DNNs for Understanding the Environment
Depth Estimation

State-of-the-art approaches 
use Deep Neural Networks 
which require up to several 

hundred millions of 
operations and weights to 

compute!
>100x more complex than 

video compression

Semantic Segmentation
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Memory Access is the Bottleneck

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated 

partial sum

• Example: AlexNet has 724M MACs 
à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM
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Properties We Can Leverage
• Operations exhibit high parallelism

à high throughput possible

• Input data reuse opportunities (up to 500x)
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Convolutional
Reuse 

(pixels, weights)

Filter Image
…

…

…

…

… ……
…

…

Image
Reuse
(pixels)

… 

… 

… 

…

… … … 

… 

… 

… 

… 

2

1

Filters

Image

Filter
Reuse

(weights)

…

…

…
… … … 

… 

… … … 

…
Filter

Image
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Exploit Data Reuse at Low-Cost Memories

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger memories consume more power

0.5 – 1.0 kB

Control

Reg File
Specialized 

hardware with 
small (< 1kB) 

low cost memory 
near compute
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Deep Neural Networks at under 0.3 W

On
-c

hip
 B

uff
er

Spatial 
PE Array

4mm

4m
m

Overall >10x energy reduction compared to a mobile GPU

[Chen et al., ISSCC 2016, ISCA 2016] 

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM

Eyeriss
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Micro Top Picks Award

[Joint work with Joel Emer] 

http://eyeriss.mit.edu

http://eyeriss.mit.edu/


Features: Energy vs. Accuracy 

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

Energy/
Pixel (nJ)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman et al., ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.

On
-c

hip
 B

uff
er Spatial 

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2
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Energy-Efficient Processing of DNNs

V. Sze, Y.-H. Chen, 
T-J. Yang, J. Emer, 

“Efficient Processing of 
Deep Neural Networks: 
A Tutorial and Survey,” 
Proceedings of the IEEE, 

Dec. 2017

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

We identified various limitations to existing approaches

http://eyeriss.mit.edu/tutorial.html
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http://eyeriss.mit.edu/tutorial.html


• Popular efficient DNN algorithm approaches 

Design of Efficient DNN Algorithms

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Compact Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings?
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Data Movement is Expensive

Energy of weight depends on memory hierarchy and dataflow

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Energy-Evaluation Methodology

DNN Shape Configuration
(# of channels, # of filters, etc.)

DNN Weights and Input Data
[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

DNN Energy Consumption 
L1 L2 L3

Energy

…

Memory 
Accesses

Optimization

# of MACs
Calculation

…

# acc. at mem. level 1
# acc. at mem. level 2

# acc. at mem. level n

# of MACs

Hardware Energy Costs of each 
MAC and Memory Access

Ecomp

Edata

Tool available at: https://energyestimation.mit.edu/

[Yang et al., CVPR 2017]
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https://energyestimation.mit.edu/


• Number of weights alone is not a good metric for energy

• All data types should be considered 

Key Observations

Output Feature Map
43%

Input Feature Map
25%

Weights
22%

Computation
10%

Energy Consumption 
of GoogLeNet

[Yang et al., CVPR 2017]
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Directly target energy and 
incorporate it into the 

optimization of DNNs to 
provide greater energy savings

Energy-Aware Pruning

• Sort layers based on energy and 
prune layers that consume most 
energy first

• EAP reduces AlexNet energy by 
3.7x and outperforms the 
previous work that uses 
magnitude-based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html

[Yang et al., CVPR 2017]
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# of Operations vs. Latency

• # of operations (MACs) does not approximate latency well

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

25

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html


NetAdapt: Platform-Aware DNN Adaptation
• Automatically adapt DNN to a mobile platform to reach a 

target latency or energy budget
• Use empirical measurements to guide optimization (avoid 

modeling of tool chain or platform architecture) 

[Yang et al., ECCV 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

26

Code available at http://netadapt.mit.edu

http://netadapt.mit.edu/


• NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

Improved Latency vs. Accuracy Tradeoff

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

[Yang et al., ECCV 2018]
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FastDepth: Fast Monocular Depth Estimation
Depth estimation from a single RGB image desirable, due to 

the relatively low cost and size of monocular cameras.
RGB Prediction

[Joint work with Sertac Karaman]

Auto Encoder DNN Architecture (Dense Output)

Reduction 
(similar to classification) Expansion
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FastDepth: Fast Monocular Depth Estimation
Apply NetAdapt, compact network design, and depth wise decomposition 

to decoder layer to enable depth estimation at high frame rates on an 
embedded platform while still maintaining accuracy

[Wofk*, Ma* et al., ICRA 2019]

Configuration: Batch size of one (32-bit float)

Models available at http://fastdepth.mit.edu

> 10x
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~40fps on 
an iPhone

http://fastdepth.mit.edu/


Monitoring Neurodegenerative Disorders30

• Neuropsychological assessments are time consuming and require a 
trained specialist

• Repeat medical assessments are sparse, mostly qualitative, and 
suffer from high retest variability

Mini-Mental 
State Examination (MMSE)

Q1. What is the year? Season? Date?
Q2. Where are you now? State? Floor?
Q3. Could you count backward from 

100 by sevens? (93, 86, …)

Clock-drawing test

Agrell et al. 
Age and Ageing, 1998.

[Joint work with Thomas Heldt (IMES)] 

Dementia affects 50 million people worldwide today 
(75 million in 10 years) [World Alzheimer’s Report]



Use Eye Movements for Quantitative Evaluation31

High-speed camera

Phantom v25-11

Substantial head support

SR EYELINK 1000 PLUS

IR illumination

Reulen et al., Med. & Biol. Eng. & 
Comp, 1988.

Clinical measurements of saccade latency are done in constrained 
environments that rely on specialized, costly equipment.

Eye movements can be used to quantitatively evaluate severity, 
progression or regression of neurodegenerative diseases



Measure Eye Movements Using Phone

[Saavedra Peña et al., EMBC 2018] [Lai et al., ICIP 2018]

Develop algorithm to measure eye 
movement using a consumer-grade 

camera rather than high-cost 
research-grade camera.

Enable low-cost in-home 
longitudinal measurements. 

Co
un

t

Eye movement 
feature

Eye movements
Smartphone

Phantom 
($100k)

iPhone 6 
(< $1k)

Reaction Time (milliseconds)
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• Energy-Efficient AI extends the reach of AI beyond 
the cloud by reducing communication requirements, 
enabling privacy, and providing low latency so that 
AI can be used in wide range of applications ranging 
from robotics to health care.  
• Cross-layer design with specialized hardware 

enables energy-efficient AI, and will be critical to the 
progress of AI over the next decade.

Summary33

Today’s slides available at www.rle.mit.edu/eems For Updates
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Additional Resources

For updates
http://mailman.mit.edu/mailman/listinfo/eems-news

Overview Paper
V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient 
Processing of Deep Neural Networks: A Tutorial 
and Survey,” Proceedings of the IEEE, Dec. 2017

Book Coming Soon!

MIT Professional Education Course on 
“Designing Efficient Deep Learning Systems” 
http://professional-education.mit.edu/deeplearning
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More info about Tutorial on DNN Architectures 
http://eyeriss.mit.edu/tutorial.html

http://mailman.mit.edu/mailman/listinfo/eems-news
http://professional-education.mit.edu/deeplearning
http://eyeriss.mit.edu/tutorial.html


• Energy-Efficient Hardware for Deep Neural Networks
– Project website: http://eyeriss.mit.edu

– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep 
Convolutional Neural Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, 
No. 1, pp. 127-138, January 2017.

– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for 
Convolutional Neural Networks,” International Symposium on Computer Architecture (ISCA), pp. 367-
379, June 2016. 

– Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural 
Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 
(JETCAS), June 2019. 

– Eyexam: https://arxiv.org/abs/1807.07928

• Limitations of Existing Efficient DNN Approaches 
– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient 

Design Approaches for Deep Neural Networks,” SysML Conference, February 2018.

– V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and 
Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.

– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html
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• Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-

Aware Pruning,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 

– Energy estimation tool: http://eyeriss.mit.edu/energy.html
– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural 

Network Adaptation for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018. 
http://netadapt.mit.edu

– D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on 
Embedded Systems,” IEEE International Conference on Robotics and Automation (ICRA), May 2019. 
http://fastdepth.mit.edu/

• Energy-Efficient Visual Inertial Localization  
– Project website: http://navion.mit.edu

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient 
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on 
VLSI Circuits (VLSI-Circuits), June 2018. 

– Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An 
Algorithm-and-Hardware Co-design Approach,” Robotics: Science and Systems (RSS), July 2017. 

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A 2mW Fully Integrated Real-Time 
Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Journal of Solid 
State Circuits (JSSC), VLSI Symposia Special Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.

References37

http://eyeriss.mit.edu/energy.html
http://netadapt.mit.edu/
http://fastdepth.mit.edu/
http://navion.mit.edu/


• Monitoring Neurodegenerative Disorders Using a Phone 
– H.-Y. Lai, G. Saavedra Peña, C. Sodini, T. Heldt, V. Sze, “Enabling Saccade Latency Measurements with 

Consumer-Grade Cameras,” IEEE International Conference on Image Processing (ICIP), October 2018.
– G. Saavedra Peña, H.-Y. Lai, V. Sze, T. Heldt, “Determination of saccade latency distributions using video 

recordings from consumer-grade devices,” IEEE International Engineering in Medicine and Biology Conference 
(EMBC), 2018.

– H.-Y. Lai, G. Saavedra Peña, C. Sodini, V. Sze, T. Heldt, “Measuring Saccade Latency Using Smartphone 
Cameras,” to appear in IEEE Journal of Biomedical and Health Informatics (JBHI)
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