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Video is the Biggest Big Data

Over 70% of today’s Internet traffic is video
Over 300 hours of video uploaded to YouTube every minute
Over 500 million hours of video surveillance collected every day

; Youg//l
111
amaz

N instant vudeo

Energy limited due Power limited due
to battery capacity to heat dissipation

Need energy-efficient pixel processing!
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Energy-Efficient Multimedia Systems Group

( Next-Generation Video Coding (Compress Pixels)

Ultra-HD

Goal: Increase coding efficiency, speed and energy-efficiency

( Energy-Efficient Computer Vision & Deep Learning (Understand Pixels)\
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k Recognition Self-Driving Cars

Goal: Make computer vision as ubiquitous as video coding




Features for Object Detection/Classification

Energy/
e Hand-crafted features pixel A
— Histogram of Oriented Gradients (HOG) ©DCNN
Reduce power
— Deformable Parts Model (DPM)
. . . . °DPM
* Trained features (using machine learning)
°HOG
— Deep Convolutional Neural Nets (DCNN) —>
Accuracy
HOG %8 &% DPM DCNN
Rigid Template Flexible Template High level
based on edges based on edges Abstraction
[Dalal, CVPR 2005] [Felzenszwalb, PAMI 2010] [Krizhevsky, NIPS 2012]
Cited by 14500 Cited by 4063 Cited by 4843
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Typical Constraints on Video Coding

* Area cost
— Memory Size 100-500kB

* Power budget MIT Object
— < 1W for smartphones Detection Chip
* Throughput [VLS1 2016]
[paper]

— Real-time 30 fps

* Energy
— ~1nl/pixel

DPM

Video Compression  Object
Detection



http://www.rle.mit.edu/eems/wp-content/uploads/2016/06/dpm_vlsi_2016.pdf

Eyeriss: Energy-Efficient

Hardware for DCNNs

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016 [paper] / ISCA 2016 [paper]
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http://www.rle.mit.edu/eems/wp-content/uploads/2016/02/eyeriss_isscc_2016.pdf
http://www.rle.mit.edu/eems/wp-content/uploads/2016/04/eyeriss_isca_2016.pdf

Increased Accuracy with Deep Learning

ImageNet Top 5 Classification Error (%)
30

[O. Russakovsky et al.,
1JCV, 2015]
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due to Deep Learning

10 -

\2010 2011 2012 2013 2014 2015 Human

) \ J
| |

Hand-crafted feature- Deep Learning-
based designs based designs

Deep Learning requires significantly more computation than
previous approaches




llE Human or Superhuman Accuracy Level

* Face recognition

— Deep learning accuracy (97.25%) vs. Human accuracy (97.53%)
non-linearity

J | REPRESENTATION

alista_ - .Jpg Frontalization: ~ 32x11x11x3  32x3x3x32  16x9x9x32
Detection & Localization ~ @152X152x3 ~ @142x142 2 @71x71  @63x63 = @55x55 = @25x25 = @21X21

[Yanlv etal. CVPR 2014]

* Fine grained category recognition (e.g. dogs, monkeys, snakes, birds)

— Deep Iearnmg errors: 7 vs. Human errors 28

120 species of dogs

Gande Dinment, Dandie Dnmant terrier
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[O. Russakovsky et al., JCV 2015]




Bl AlphaGo using Deep Learning

Go is exponentially more
complex than chess
(10179 legal positions)

Google’s AlphaGo, a
computer algorithm,
beat Go world champion
Lee Sedol4to 1

At last — a computer program that
can beat a champion Go player PAGE 484

ALL SYSTEMS GO

POPULAR SCIENCE
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Deep Convolutional Neural Networks

Modern deep CNN: up to 1000 CONYV layers

f \

Low-level m High-level
Features Features
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Deep Convolutional Neural Networks

1 -3 layers

High-level
Features
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Deep Convolutional Neural Networks

CONV FC
Layer Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption
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High-Dimensional CNN Convolution

Input Image (Feature Map)

A I

Filter =—
—— I DY |
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High-Dimensional CNN Convolution

Input Image (Feature Map)
Filter —

.

«— R —

<« —>

Element-wise
Multiplication
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High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image

Filter > a pixel
f s ;
T = ® ‘ ‘
<— R —> ] H — <€ E >
Element-wise Partial Sum (psum)
Multiplication Accumulation
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High-Dimensional CNN Convolution

Input Image (Feature Map) Output Image

Filter

<« —>

Sliding Window Processing
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High-Dimensional CNN Convolution

Input Image

Filter A"C’{" Output Image
L /:{H = @ E
i l
<~ R— < H > < E —

Many Input Channels (C)

it  AlexNet: 3 — 192 Channels (C) ST ——




High-Dimensional CNN Convolution

Input Image

Many Output Image
Filters (M) &7 .’"%>pl—g
c R T ~ = :
K — * — ’
f H = D M
R //1 ] E [
i |
< R— < H > < E —
X
Many
Output Channels (M
S p (M)
i :
VY &
LM
<~ R —
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High-Dimensional CNN Convolution

Many
Input Images (N) Many
. . . Output Images (N
Filters L . P ges (N)
A M?’. .
‘(C.;"‘ K A‘('
! H
R : E
l ) v 1 "‘. v 1 =
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Large Sizes with Varying Shapes

AlexNet! Convolutional Layer Configurations

Layer | Filter Size (R) | # Filters (M) | # Channels (C) | Stride

1 11x11 96 3 4

2 5x5 256 48 1

3 3x3 384 256 1

4 3x3 384 192 1

5 3x3 256 192 1

Layer 1 Layer 2 Layer 3

34k Params 307k Params 885k Params
105M MACs 224M MACs 150M MACGs

i 1. [Krizhevsky, NIPS 2012] seeenginl MRS e




Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible
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Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read : MAC’ . Memory Write
filter Weiqht§ A ALU
image pixel: ®
partial sum : ( : ;gi?e;[le:um >

* multiply-and-accumulate
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Properties We Can Leverage

* Operations exhibit high parallelism
- high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC’ Memory Write
filter Wei.qht A ALU
DRAM Ll updated__
200x 1x

Worst Case: all memory R/W are DRAM accesses

« Example: AlexNet [NIPS 2012] has 724M MACs
- 2896M DRAM accesses required
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Properties We Can Leverage

e Operations exhibit high parallelism
- high throughput possible

* Input data reuse opportunities (up to 500x)
- exploit low-cost memory

Images

Filters
: Image | Image :
Filter e Filter
= I e
2
Convolutional Image Filter
Reuse Reuse Reuse

(pixels, weights) (pixels) (weights)



Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy Memory Hierarchy
Register File
ALU ALU ALU ALU
ALU ALU ALU ALU

A 4 A 4 A 4 A 4
ALU ALU ALU ALU

A 4 A 4 A 4 A 4

ALU ALU ALU ALU
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Advantages of Spatial Architecture

Spatial Architecture
(Dataflow Processing)

Efficient Data Reuse Memory Hierarchy

Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File

Control
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How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)

CNN Convolution
Memory Hierarchy

pixels
weights »
partial
sums

Goal: Increase reuse of input data
(weights and pixels) and local
partial sums accumulation
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Energy-Efficient Dataflow

Yu-Hsin Chen, Joel Emer, Vivienne Sze, ISCA 2016 [paper]

Maximize data reuse and accumulation at RF
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http://www.rle.mit.edu/eems/wp-content/uploads/2016/04/eyeriss_isca_2016.pdf

Data Movement is Expensive

Off-Chip
DRAM

Global

Buffer

Accelerator

Processing Engine

PE 4 PE
¢
PE ALU

PE

bem

ALU

ALU

ALU

ALU

ALU

Data Movement Energy Cost

2%
1%

/| 200

6x

1% (Reference)

Maximize data reuse at lower levels of hierarchy




Weight Stationary (WS)

Global Buffer

* Minimize weight read energy consumption
— maximize convolutional and filter reuse of weights

« Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [Origami, GLSVLSI 2015]
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Output Stationary (OS)

Global Buffer

Psum

* Minimize partial sum R/W energy consumption
— maximize local accumulation

« Examples:

[Gupta, ICML 2015] [ShiDianNao, /ISCA 2015]
[Peemen, ICCD 2013]
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No Local Reuse (NLR)

Global Buffer

« Use a large global buffer as shared storage
— Reduce DRAM access energy consumption

« Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]
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Row Stationary: Energy-efficient Dataflow

Input Image
Filter Output Image
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1D Row Convolution in PE

Input Image
Filter Partial Sums

* =

Reg File

M
H

| 3|
HIT AP eseecrisosrory  MTL 00 @
institut
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H

| 3|
HIT B sosconcrianonarony
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H
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1D Row Convolution in PE

Input Image

Filter Partial Sums

ablc +

Reg File

H
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1D Row Convolution in PE

« Maximize row convolutional reuse in RF
— Keep a filter row and image sliding window in RF

 Maximize row psum accumulation in RF

Reg File

H

microsystems technology laboratories
institute of




2D Convolution in PE Array

PE 1

*
|

u -
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2D Convolution in PE Array

1

PE 1
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2D Convolution in PE Array
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2D Convolution in PE Array
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Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Filter rows are reused across PEs horizontally
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Convolutional Reuse Maximized

PE 1 PE 4 PE 7
PE 2 PE 5 PE 8
PE 3 PE 6 PE 9

Image rows are reused across PEs diagonally
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Maximize 2D Accumulation in PE Array

PE 1 PE 4 PE 7

PE 3 PE 6 PE 9

1 1
e | eee | e
I 1

Partial sums accumulate across PEs vertically
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CNN Convolution — The Full Picture

Filter 1 Image 1 & 2 Psum 1 & 2
Multiple images: [+ I = I
Filter1 & 2 Image 1 Psum1 &2
Multiple filters: (TN (] = (IR
Filter 1 Image 1 Psum

Multiple channes: [T + IS - [

Map rows from multiple images, filters and channels to same PE
to exploit other forms of reuse and local accumulation




Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary
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Evaluate Reuse in Different Dataflows

 Weight Stationary

— Minimize movement of filter weights

* Output Stationary

— Minimize movement of partial sums

* No Local Reuse

— Don’t use any local PE storage. Maximize global buffer size.

* Row Stationary

Evaluation Setup Normalized Energy Cost’
e Same Total Area LALUT P 1x (Reference)
e AlexNet EE—m 1
PE_|——>|E| 2%
" 256PEs O——@m 6x
e Batchsize=16 "DRAM | 5T 2 200%




Dataflow Comparison: CONV Layers

2

1'5 l
Normalized 1 I
Energy/MAC

0 -

WS 0S, 0S; O0S. NLR RS
CNN Dataflows

RS uses 1.4x — 2.5% lower energy than other dataflows ‘

L}
i A sascnssevrny MTLees
AT MIT "
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Dataflow Comparison: CONV Layers

Normalized
Energy/MAC I

S, 0S; 0S,
CNN Dataflows

® psums

= weights

W pixels

RS optimizes for the best overall energy efficiency
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Energy-Efficient Accelerator

Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze, ISSCC 2016 [paper]

Exploit data statistics
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http://www.rle.mit.edu/eems/wp-content/uploads/2016/02/eyeriss_isscc_2016.pdf

Eyeriss Deep CNN Accelerator

Link Clock' Core Clock DCNN Accelerator
_“I
| 14%x12 PE Array
. Filter Filt
' Inputimage [N Img
I Jecomop A
Psum

Sl Psum

Output Image ERY:

64 bits

n:=- Y reseancrasonatony MTLeee
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Data Compression Saves DRAM BW

DRAM
Access
(MB)

Apply Non-Linearity (ReLU) on Filtered Image Data

9

-1

-3

-5

RelU

6

-1

V

9

0

0

1
AlexNet Conv Layer

2

3

4

5

5

0

Uncompressed
Filters + Images

Compressed

Filters + Images

ttttttttttt




Zero Data Processing Gating

Skip PE local memory access

Skip MAC computation
Save PE processing power by 45%

No R/W No Switching
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Chip Spec & Measurement Results!

Technology

TSMC 65nm LP 1PSM

On-Chip Buffer

108 KB

# of PEs

168

Scratch Pad / PE

0.5 KB

Core Frequency

100 — 250 MHz

Peak Performance

33.6 — 84.0 GOPS

Word Bit-width

16-bit Fixed-Point

Natively Supported
CNN Shapes

Filter Width: 1 — 32

Filter Height: 1 - 12
Num. Filters: 1 — 1024
Num. Channels: 1 — 1024
Horz. Stride: 1-12

Vert. Stride: 1,2, 4

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (16GB) and 2.7 billion
outputs (5.4GB)], only requires 208.5MB (buffer) and 15.4MB (DRAM)
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Comparison with GPU

This Work NVIDIA TK1 (Jetson Kit)
Technology 65nm 28nm
Clock Rate 200MHz 852MHz
# Multipliers 168 192
On-Chip Storage Buffer: 108KB Shared .Mem: 64KB
Spad: 75.3KB Reg File: 256KB
Word Bit-Width 16b Fixed 32b Float
Throughput!? 34.7 fps 68 fps
Measured Power 278 mW Idle/Active?: 3.7W/10.2W
DRAM Bandwidth 127 MB/s 1120 MB/s 3

1. AlexNet Convolutional Layers Only

2. Board Power

3. Modeled from [Tan, SC11]
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Demo of Image Classification on Eyeriss

U i« T @ 3% TewBinm Q =

[ISSCC 2016] Paper 14.5: Eyeriss Caffe Demo

Yu-Msin Chen’', Tushar Krishna', Joel Emer’ 2
L3

This demo shows Caffe running with th

Jetson TK1 VC707 + Eyeriss

1. System Setup 2. Eyeriss Die Photo

Classification

=
X
4
W
Vel
=
[
=
I 4
»
»

https://vimeo.com/154012013
Integrated with BVLC Caffe DL Framework




Summary of Eyeriss Deep CNN

* Eyeriss: a reconfigurable accelerator for
state-of-the-art deep CNNs at below 300mW

* Energy-efficient dataflow to reduce data movement
* Exploit data statistics for high energy efficiency

* Integrated with the Caffe DL framework and
demonstrated an image classification system
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Features: Energy vs. Accuracy

Exponential
1000
2
Energy/ 100 + AlexNet
Pixel (nJ)
. 10 :
Measured in 65nm* Video
1. [Suleiman, VLSI 2016] Compression
2. [Chen, ISSCC 2016] 1 - HOG!
Linear
* Only feature extraction. Does 0.1 : : : |
not include data, augmentation,
ensemble and classification 0 20 40 60 80

energy, etc.

Accuracy (Average Precision)

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]

o RESEARCH LABORATORY
II I II OF ELECTRONICS AT MIT M:Iskm:egngogy laboratories

llllllllllllllll




Il Acknowledgements

This work is funded by the DARPA YFA grant, MIT Center
for Integrated Circuits & Systems, and a gift from Intel.

Oh0
O

More info about research in the Energy-
Efficient Multimedia Systems Group @ MIT

http://www.rle.mit.edu/eems

More info about Eyeriss and
Tutorial on DNN Architectures at

http://leyeriss.mit.edu

Y Follow @eems_mit

for updates
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