Elsa Olivetti

Department of
Materials Science &
Engineering

Informing design of
resource-effective
materials, processes
and systems



Resource-effective decision making for design of
materials, operations, industries, and systems

Materials do not exist in isolation,

they are part of complex networks. /\
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Analysis of Potential Supply Chain Bottlenecks
in Metals for Li-ion batteries
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Resource restrictions for relevant

materials
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Static depletion above 30 years for all

Ni and Mn index is relatively constant indicating that the economics of
demand drive the supply towards continued economical extraction.
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Geographic concentration for relevant
materials

Concentrated supply chain
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Cobalt supply chain focuses on few
dominant players

Trade flow in million USD
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Co globally concentrated in mining, but it is also geographically
concentrated in refining

I s Massachusetts Institute of Technology
II Department of Materials Science & Engineering



Lithium supply chain is more diversified

Trade flow in million USD
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Lithium carbonate recovered via multiple routes and geographically less
concentrated
Resource and reserve estimates are still expanding
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Amount of material needed per kWh varies
by chemistry

Graphitic
carbon
Lithium cobalt 0X1de electromcs 0.113 0.959

Lithium nickel

cobalt aluminum 0.112 0.143 0.759 0

oxide

Lithium nickel Auto, grid, ~1.2%
0.139 0.394 0.392 0.367

manganese cobalt

other
oxide NMC-111

0126 0214  0.641  0.200

NMC-811 0.111 0.094 0.750 0.088

Current metal required in kg/kWh
* literature values

I S Massachusetts Institute of Technology
II Department of Materials Science & Engineering



Focus on cobalt demand and supply
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What is materials criticality?

Criticality # Scarcity!

Criticality
Risk deemed too high by a decision-maker
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Materials availability:
Byproduct dependency used as metric of criticality

Indicator Relation with supply risk® Frequency of use Means of measurement/units
Country concentration of production Direct 12 Herfindahl-Hirschman-Index
Country governance Dep. on def. 10 Qualitative, index

Depletion time Inverse 9 Years

By-product dependency Direct 7 Y0

Company concentration in mining corpo- Direct 5 Herfindahl-Hirschman-Index
rations”

Demand growth” Direct 5 Qualitative, ratio

Import dependence” Direct 3 %, net value
Recycling/recycling potential® Inverse 3 Tons

Substitutability® Inverse 3 Qualitative

Volatility of commodity prices Direct 2 USD/kg, EUR/kg
Exploration degree Inverse 1 USD, EUR

Production costs in extraction Direct | USD. EUR

Stock keeping Inverse 1 Yo

Market balance Direct 1 Tons

Mine/refinery capacity Inverse 1 Yo

Future market capacity Inverse 1 %

Investment in mining Inverse 1 USD/t, EUR/t

Climate change vulnerability Direct 1 Qualitative

Temporary scarcity Direct 1 Qualitative

Risk of strategic use Direct 1 Qualitative

Abundance in earth’s crust Direct 1 Ppm

(Frenzel et al., 2017)
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Develop and refine metrics to guide decision

making
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Byproduct status as indicator of criticality?

* Sometimes...
®* Yes for indium

* Mixed evidence for selenium and germanium’s
inelastic supply, including:

— the supply limit of cartier,
— recovery efficiency limits,
—lack of a global price-setting mechanism

— national strategic stockpiling that disrupts market forces.

* Conclusion: Difference between supply and supply
potential more indicative of criticality than ‘byproduct
dependence’
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Novel materials development

Non-cobalt containing cathodes
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Computational efforts have accelerated the
materials discovery process
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Develop recipe database to improve understanding
of materials synthesis

N
Cantants Ksts available st Sciancelimct F 1 B .
Electrochemistry Communications :“Jm EXtraCt SyntheSIS teXt through
% machine learning and rule-based
2. Experimental methods methOdS

NaNiy3Co1/3Fe1,202 was synthesized by solid-state reaction. Excess NaNi1/3Col/3Fe1/302
amounts of Na,0, NiO, Co304 and Fe;0; were mixed and ball milled .
for 4 h at 500 rpm rate, and the resulting material was collected in the Excess amounts NaZO NiO
glove box. About 0.5 g of powder was fired at 800 °C under O, for C0304 Fe203
14 h before it was quenched to room temperature and moved to a

X-ray diffraction GO patterns were collected alytica
X'Pert Pro equipped with Cu Ka radiation in the 26 range of 5-85°.

0.5 g of

Identity hundreds of thousands of
manuscripts by target material

Generate codified,
machine readable database
of recipes
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Extracted Synthesis Recipe Schema Example Extracted Materials

titania

Input . Output
—b Operation s 2 Material

Example Extracted Operations
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Resource-effective material development:

suggesting multiple routes for synthesis
I

Suggesting synthesis conditions for materials, extend to novel materials

Clustering of latent space points to role for

MnO, NaOH and ethanol in brookite synthesis
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Generate recipes
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Resource-effective performance of materials

* Systems thinking divorced from materials science
and vice versa masks opportunities

— As system, material, and process complexity increases
need novel ways to analyze problems

* Materials have critical role in solving key economic
and environmental problems

— Solutions that account for scale are needed to address the
impact of materials use
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