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Resource-effective decision making for design of  
materials, operations, industries, and systems

Materials do not exist in isolation, 
they are part of  complex networks.
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Resource restrictions for relevant 
materials
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Static depletion above 30 years for all
Ni and Mn index is relatively constant indicating that the economics of 
demand drive the supply towards continued economical extraction. 
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Geographic concentration for relevant 
materials
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Cobalt supply chain focuses on few 
dominant players

Co globally concentrated in mining, but it is also geographically 
concentrated in refining
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Lithium supply chain is more diversified

Lithium carbonate recovered via multiple routes and geographically less 
concentrated
Resource and reserve estimates are still expanding
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Amount of material needed per kWh varies 
by chemistry

Use Li Co Ni Mn Graphitic 

carbon

Lithium cobalt oxide electronics 0.113 0.959 0 0

~1.2*

Lithium nickel 

cobalt aluminum 

oxide

Auto, grid, 
other

0.112 0.143 0.759 0

Lithium nickel 

manganese cobalt 

oxide NMC-111
0.139 0.394 0.392 0.367

NMC-622 0.126 0.214 0.641 0.200
NMC-811 0.111 0.094 0.750 0.088

Current metal required in kg/kWh
* literature values
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Focus on cobalt demand and supply
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CriƟcality ≠ Scarcity!

Market
Imperfections

Functionality
Constraints

Inherent to mining
Specific to the material
From external factors

Substitutability
Feasibility of alternatives
Importance of technology 

RI
SK

Criticality 
Risk deemed too high by a decision‐maker

What is materials criticality?
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Materials availability: 
Byproduct dependency used as metric of criticality

(Frenzel et al., 2017)
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Criticality classification of  byproduct and 
carrier pairs

High criticality

Medium criticality
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Develop and refine metrics to guide decision 
making

System Supply elasticity 95% CI Causes of inelasticity
Zn-In (-0.08, 0.29) Supply limited by production 

capacity from carrier
Lack of global price 
setting mechanismCu-Se (-0.03, 0.09) Supply limit of carrier; Limit 

of recovery efficiency (~50%)
Zn/Coal-Ge (-0.31, 0.36) National stockpiling strategy
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Byproduct status as indicator of criticality?

• Sometimes…

• Yes for indium

• Mixed evidence for selenium and germanium’s 
inelastic supply, including: 

– the supply limit of  carrier, 

– recovery efficiency limits, 

– lack of  a global price-setting mechanism

– national strategic stockpiling that disrupts market forces.

• Conclusion: Difference between supply and supply 
potential more indicative of  criticality than ‘byproduct 
dependence’



Massachusetts Institute of Technology
Department of Materials Science & Engineering

Novel materials development

Non-cobalt containing cathodes

Li-air, Li-sulfur

Solid state
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Computational efforts have accelerated the 
materials discovery process
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7 publishers to 
date

~1,500K 
texts

95% 
paragraph
accuracy

Automated Pipeline Database query

86% 
extraction 
accuracy



Massachusetts Institute of Technology
Department of Materials Science & Engineering

Develop recipe database to improve understanding 
of materials synthesis

NaNi1/3Co1/3Fe1/3O2 was synthesized by solid‐
state reaction. Excess amounts of Na2O, NiO,
Co3O4 and Fe2O3 weremixed and ball milled 
for 4 h at 500 rpm rate, and the resulting 
material was collected in the glove box. About 
0.5 g of powder was fired at 800 °C under O2
for 14 h before it was quenched to room 
temperature and moved to a glove box filled 
with argon.

Extract synthesis text through 
machine learning and  rule-based 

methods

Identify hundreds of thousands of 
manuscripts by target material

Generate codified, 
machine readable database 

of  recipes
Recipe

database
Recipe

database
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Resource-effective material development: 
suggesting multiple routes for synthesis 

npj Computational materials, accepted

TiO2

Suggesting synthesis conditions for materials, extend to novel materials

MnO2

Clustering of latent space points to role for 
NaOH and ethanol in brookite synthesis

Polymorphs for MnO2 overlaid with most 
probable alkali‐ion use in synthesis 
(intercalation‐based phase stability)

Scientific Data, 2017
Chem. Of Materials, 2017



Fe2O3

PbO3

Mix Heat Heat
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Generate recipes
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Resource-effective performance of materials

• Systems thinking divorced from materials science 
and vice versa masks opportunities 

– As system, material, and process complexity increases 
need novel ways to analyze problems

• Materials have critical role in solving key economic 
and environmental problems

– Solutions that account for scale are needed to address the 
impact of materials use
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