

Nanoelectronics Laboratory

Jeehwan Kim

Assistant Professor Mechanical Engineering Materials Science and Engineering Research Laboratory of Electronics

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

Massachusetts Institute of Technology

1. Extremely cost-effective semiconductor layer-transfer : Graphene-based layer transfer (GBLT)

2. Highly uniform advanced RRAM

: Epitaxial RAM (ERAM)

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

Nanoelectronics Lab

Wafer-scale single-crystalline graphene

World first single-crystalline monolayer TMDC

Perfectly monolayer

2 µm

1.1 ML one step

Raman spectra

Wavenumber (cm⁻¹)

Single-crystalline (RHEED)

Six fold symmetry

High yield wafer-scale transfer / perfectly monolayer

Our new growth method

2 µm

.1 ML two-step

Highest electron mobility for grown MoSe₂: 400 cm²/V-s at R.T/1000 cm²/V-s at L.T

Massachusetts Institute of Technology

1. Extremely cost-effective semiconductor layer-transfer : Graphene-based layer transfer (GBLT)

2. Highly uniform advanced RRAM

: Epitaxial RAM (ERAM)

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

Extremely cost-effective semiconductor layer-transfer

: Graphene-based layer transfer (GBLT)

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

Major bottleneck for advancing semiconductor technology

Substrate: Essential building block to form Electronic/optoelectronic devices Epitaxial growth: Process for forming device film structures on the substrate

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_4.html

■ Requirements → Process cost must be cheaper than the substrate cost

- Wafer reusability
- High throughput: Fast release
- Minimum material consumption
 - Precise control of release interface
 - No post-release treatment (i.e. CMP)

Universality

Chemical lift-off (Epitaxial lift-off, ELO)

Pro: Control of release interface

Limited application mainly for GaAs & InP

Post-treatment required

Slow release

Cons:

For PV applications

The Costs for the Epi Substrate as a Function of Reuse Number Reference Case Repolishing Cost (\$8 per repolish per 133 cm² wafer) and Cell Efficiency (25%

http://www.nrel.gov/docs/fy14osti/60126.pdf

E. Yablonovitch et al., Appl. Phys. Lett. 51, 2222 (1987). B. M. Kayes et al, IEEE J. Photovolt. 4, 729 (2014)

Pro: Control of release interface

Cons:

- Post-treatment required
- Cracking from local pressurization
- Slow release
- Limited application mainly for transparent substrate

T. Ueda et al, Jap. J. of Appl. Phys. 50, 041001 (2011) D. lida et al., Appl. Phys. Lett. 105, 072101 (2014) C.-Y. Lee. Appl. Phys. Exp. 7, 042103 (2014).

Pros: Fast Release, Universally applied

Cons:

- Post-treatment required
- Only applied for thick-layer release
- Limited wafer reusability

Bedell et al., J. Phys. D: Appl. Phys. 46, 152002 (2013). Sweet et al., Photovoltaic Specialist Conference (2015)

Graphene-based layer transfer (GBLT)

sp²-bonded graphene: No broken bonds on the surface

- Precise release from graphene
- Post-release treatment NOT required
- **1 sec** release due to weak interaction
- Universal for any materials

GaN on graphene

Growth/transfer Single-crystalline GaN on graphene

RMS roughness: 0.3 nm (surface), 0.5 nm (released) Dislocation density: 9e8cm⁻² Single-crystallinity: Single-crystal

Substrate reusability

No post-treatment required for further recycle

Direct bondability

J. Kim et al., Nature Comm, Vol. 5, 4836 (2014)

Graphene reusability

Blue LED growth on a recycled graphene/SiC substrate (3 times)

Fabrication of GaN-based Blue LED on Tape by exfoliation

Jeehwan Kim et al. Nature Communications, Vol. 5, 4836 (2014)

Unversality of GBLT

001

Growth of single-crystalline GaN, GaAs, InP, GaP, Ge on graphene

GBLT of GaAs

Single-crystalline GaAs grown on graphene

Successful exfoliation precisely from graphene

XSEM: Smooth surface morphology

Dark field XTEM: Strain field

No sign of dislocation

Y. Kim, S. Cruz, J. Kim et al., Manuscript submitted (2016)

Role of graphene

- Universal epitaxial seed layer \rightarrow Growth of any semiconductors
- Dislocation-reducer/filter
- Release layer \rightarrow 1sec release
- Wafer Surface protection \rightarrow infinite reuse

Enabled heterointegration

Application goals: Large-scale dislocation-free membrane

8-inch GaN, AIN, Diamond etc

Application: Cost-effective device manufacturing

- photovoltaics/LEDs/Powertransistors/heterointegration/3D IC

Advanced photovoltaics

Advanced LEDs

InGaN

InGaN

InGaP

Host substrate

Heterointegration

optical interconnect

High efficiency RGB (Micro LED/Solid state lighting) Qua

Quantum computing

Highly uniform advanced RRAM

- Epitaxial RAM (ERAM)

Jeehwan Kim Research Group http://jeehwanlab.mit.edu

Conventional Random Access Memory

	DRAM	SRAM	Flash (NAND)	FeRAM	STT-MRAM	PCRAM	RRAM(ECM)	RRAM(VCM)
Structure	1T1C	6Т	1T	1T1C	1(2)T1R	1T(D)1R	1R	1R
Cell Area	6F ²	140F ²	4F ²	22F ²	20F ²	4F ²	4F ²	4F ²
W/E Time	< 10 ns	0.2 ns	1/0.1 ms	65 ns	35 ns	100 ns	< 1 ns	< 1 ns
Retention Time	64 ms	N/A	10 y	10 y	> 10 y	> 10 y	1000hr at 200 °C	3000 hr at 150°C
Write Cycles	> 1E16	> 1E16	1E5	1E14	> 1E12	1E9	1E10	1E12
Write Operating Voltage (V)	2.5	1	15-20	1.3 - 3.3	1.8	3	0.6V	1-3V
Read Operating Voltage (V)	1.8	1	4.5	1.3 - 3.3	1.8	1.2	0.2V	0.1 - 0.2 V
Single Cell Write Energy (J/Bit)	4 fJ	0.5 fJ	0.4 fJ	30 fJ	2.5 pJ	6 рЈ	1pJ (W), 8pJ (E)	115fJ(W), < 1pJ (E)

- ITRS 2013

Why Resistive Random Access Memory (RRAM)?

Devices based on resistive switching have been identified as a major contender in applications ranging from non-volatile memory storage, logic, to neuromorphic systems

- High scalability (10nm size)
- Endurance up to 10¹²
- <ns switching
 Large connectivity (2-terminal structure)
 Long retention
 - Low energy consumption
 - 3D structure
 - CMOS compatibility

l'IIT

Required device functions for commercialization

Low energy consumption						
High endurance and high retention	Currently developed ReRAMs					
High on-off ratio	do not support those functions					
Cycle-to-cycle uniformity						
Device-to-device uniformity						
\Box Current suppression in low voltage/reverse bias \rightarrow Suppression of sneak paths						

- Parallelism for neuromorphic computing
- Multibit operation for neuromorphic computing

Conventional ReRAM devices- Valence Change Memory (VCM)

Good endurance and retention

□ TaOx/Ta2O5 device :

 10^{12} write cycles with 10 years retention at $85^\circ C$

Device non-uniformity

(Cycle-to-cycle / Device-to-device)

 Conductive filament is not confined in single path that cause stochastic uncorrelated switching events .

Low On-off ratio

Digital: ~10 / Analog: ~2

S. Kim, et al., ACS Nano, 8, 10262-10269 (2014)

Conventional ReRAM devices- Electrochemical Metallization Memory (ECM)

High On-off ratio

Digital > 10⁴For reduced power, reduced bit-error-rate(BER) and increased read bandwidth in high density RRAM

Device non-uniformity

(Cycle-to-cycle / Device-to-device)

Retention/Endurance trade-off 🖏

- Weak Ag-channel formation enhances endurance but reduces retention time
- Strong Ag-channel formation increases retention time but deteriorate endurance

New epitaxial RAM (ERAM) devices (invented by Kim group at MIT)

- Long retention with long endurance
- Excellent device uniformity
- High on/off ratio
 - good for both analog and digital
 - Analog: >500, Digital: 10⁴
- Current suppression in low voltage to reduce the impact of sneak path

This will enable large-scale memory arrays for digital application as well as for neuromorphic computing

Digital switching behavior/uniformity of ERAM

- 1. High On/Off ratio > 10⁴
- 2. Excellent cycle-to-cycle and device-to-device uniformity
- 3. Suppression of low current (reduction of sneak path in arrays)

Digital application

> 8 hours retention testNo current reduction observed.

Multilevel storage from self-limiting filament growth by current-compliance

Analog switching behavior of ERAM

The analog switching behavior offers an effectively implement synaptic functions

The devices show large dynamic ranges with easier access to the intermediate states that are suitable for neuromorphic computing applications

Self-selection behavior of ERAM

Neuromorphic application

S. H. Jo, et al., Nano lett., 9, 2009.

- The analog switching behavior an effectively implement synaptic functions and enable efficient neuromorphic systems.
- High On/Off current ratio with long retention and endurance
 - Suitable for large-array neuromorphic computing and demonstration of basic synaptic learning rules such as spike-timing-dependent plasticity (STDP)

Self-selecting

Properties of ERAM

- 1. Good endurance and retention
- 2. Highly uniform devices
 - Device yield=100%, No variation in device-to-device/cycle-to-cycle
- 3. High on-off ratio: digital >10,000 / Analog 500
- 4. Self-selecting behavior

 \rightarrow No need for selectors (=another source of non-uniformity)

	Retention	Endurance	Retention & Endurance	On-off ratio	Uniformity
VCM	Excellent	Excellent	Excellent	Low	Good
ECM	Excellent	Excellent	Bad	High	Bad
OURS	Excellent	Excellent	Excellent	High	Excellent

OUR GOALS

 Fabricating extremely large-scale arrays
 Demonstration of synaptic learning rules such as spike-timing-dependent plasticity
 First demonstration of cognitive computing with ReRAM

Equipment

8" two-chamber MBE system (III-N and III-V)

2" MBE system (II-VI)

4" UHV CVD (epitaxial graphene, SiC, Si, Ge, diamond)

6" MOCVD (III-V, Si, Ge)

Collaborators

MIT:

Eugene Fitzgerald, Jing Kong, Alexie Kolpak, Jagadeesh Moodera, Richard Molnar

Harvard: Philip Kim

OSU: Jinwoo Hwang

UIUC: Minjoo Larry Lee

IBM: Tze-Chiang Chen, Frances Ross, James Hannon, Devendra Sadana

Nanoelectronics group

Graduate students

Dr. Shinhyun Choi (EE) Dr. Wei Kong (EE) Dr. Kyusang Lee (EE)

Postdocs

Chanyeol Choi (EE)

Prof. Ibraheem Almansouri (EE)

Visiting **Scholar**

Sponsors

