Committing to the environment and climate at MIT

John E. Fernández, fernande@mit.edu Dir., ESI and Urban Metabolism Group Massachusetts Institute of Technology

Climate Science and Earth Systems

Cities and Infrastructure

Sustainable Production & Consumption

SOLUTIONS

Francis O'Sullivan John Ochsendorf Elsa Olivetti

Shuhei Ono

Parag Pathak

Robin Scheffler

Noelle Selin

Susan Solomon

Justin Steil

John Sterman

Janelle Knox-Hayes

美田田

Marco Mietti

Adam Bieth

Sarah Sofia

Megan May Sergey A. Naumov

Jeremy Poindexter

SUSTAINABLE GENALS

Al & Next Gen Climate Models

Using machine learning to take advantage of vast new observational datasets in global climate models

Paul O'Gorman Pgm. in Atmosphere, Ocean and Climate

Persistent Problems

Climate models have done a good job of capturing global trends, but regional biases make it hard to predict local impacts of climate change

New Opportunities

Machine learning can improve climate models by incorporating huge observational datasets and new high-resolution simulations too complex to run in live modeling

Non-CO₂ Greenhouse Gases

Providing tools to better compare greenhouse gases like CH4 and HFCs directly to CO2 Jessika Trancik Prof. of Energy Studies

Regulatory Blind Spot

Non-CO₂ greenhouse gases account for one third of global warming effects, and may rise under regulations that target CO₂ alone

Energy Implications

More natural gas means more CH4 emissions; more refrigeration means more HFCs

Policy Evaluation

New metrics are needed to compare energy mixes

Air Pollution in China

Quantifying the environmental impacts of China's coal reductions under the 2013 Air Pollution Action Plan

Environmental Impact

Measured carbon, ozone and mercury emissions against baseline and captured regional variation

Prof. of Global

Econometrics

Concluded that health benefits from coal reductions outweighed the cost of the APAP

Policy

Presented results to senior policy officials in China and at the 2015 Paris Climate Conference

Autonomy-Enabled Transport

Modeling new transport systems with self-driving vehicles to minimize environmental impacts

Multiple Scales

Analyze the most efficient systems for autonomous trucks, aircraft, and door-to-door transport

Steven Barrett

Deep Learning

Take advantage of large satellite datasets to model truck convoys on highways and contrails in air travel

Environmental Efficiency

Study whether designing the most efficient transport systems conflicts with minimizing carbon emissions

Repurposing Industrial Waste

Turning coal ash and other industrial byproducts into cement-like building materials

Elsa Olivetti Prof. of Energy Studies

Sustainable Production

Design chemical processes to form building materials with safe chemical activators at low temperatures

Multiple Benefits

Repurpose environmentally harmful waste products into a substitute for energy-intensive cement

Past Success

Build on a regional project in India creating safe, high-quality bricks from boiler ash

Deep Sea Mining

Mineral mining of the sea floor is a new phenomenon with unknown impacts on the environment

Thomas Peacock Prof. of Mechanical Engineering

Modeling

Developed a new model of sediment plumes and tailings created in deep sea mining

Field Work

Released tracer dye in a planned mining location to collect real-world data on dispersion of byproducts

Policy

Produced a new protocol to evaluate future deep sea mining projects for risks to the environment

Plastics and the Environment Prog

Plastics: annual and cumulative production

Data sources:

PlasticsEurope's Market Research and Statistics Group (PEMRG); Conversio Market & Strategy GmbH; Geyer, R. and Law, K. L., Production, use, and fate of all plastics ever made. Science advances **2017** Compiled by Boya Xiong, PhD (Plata Lab)

What we currently know about the plastic lifecycle

Xiong, Johnson, Olsen, Plata; unpublished

A= Direct measurementB= Calculated from mass balanceC= Assumed release ratesD= Poor estimate

Plastics and the Environment (PEP)

MIT faculty and students are working with the public sector, foundations, industry, and other researchers to reduce the impact of plastic waste in the environment

Chris Noble Director of Corporate Engagement

Plastics and the Environment: current research

Prof. Desirée Plata¹ Engineered environmental degradation pathways

for broad families of polymer types and multiple environmental variables

Prof. Admir Masic¹ Sensors for characterization of microplastics in the oceans

Profs. Pierre Lermusiaux² & Tom
Peacock² 3D modelling of dispersion
and degradation transport and
biological interactions in aquatic
environments

Prof. Jeremiah Johnson³ Chemical modification of existing polyolefins to enhance recyclability through depolymerization & compatibilization strategies **Prof. Julia Ortony**⁴ *Recyclable, selfassembled nano-scale fibers*

Profs. Anthony Sinskey⁵ & Gregory Stephanopoulos⁶

Bioprocess for closed-loop PET (polyethylene) recycling*

<u>Prof. Brad Olsen⁶</u> Packaging simplification for hybrid degradation-recycling

Prof. Jeff Grossman ⁴ Microfiber filtering technology

MIT Enerav Initiative Seed Grant

¹Civil and Environmental Engineering ²Mechanical Eggineering Chemistry ⁴Material Science and Engineering ⁵Biology ⁶Chemical Engineering

MIT-MSEAS Realistic Data-Driven Ocean Modeling

70.0 W

70.5 W

71.0 W

70.5 W

71.0 W

70.0 W

P. Lermusiaux et al 2019

Mining and the Environment

Adapted from: Graedel and Allenby; Gordon, Koopmans, Nordhaus and Skinner

Here and Real

400.000

Cities adapting to climate change

What will climate feel like in 60 years?

=

https://fitzlab.shinyapps.io/cityapp/

Urban Metabolism of Ba

New projection for 2050

A 21st c. World of Cities HOW TO ADAPT & THRIVE IN A CHANGING CLIMATE?

DRIVE

Climate Science Climate Action through TECHNOLOGY DEVELOPMENT & DEPLOYMENT

COMMERCIALIZATION

BIG & Industry + MIT PERVASIVE DATALYSTS FOR FUTURE GROWTH? the ESI announces...

Cities and Climate Change – C3

BD/AI UAVs ES + Inf Resilience UrbMet/Risk

John E. Fernández fernande@mit.edu Director, ESI Chris Noble crn@mit.edu Dir. Corporate Engagement, ESI

environmentalsolutions.mit.edu MIT Environmental Solutions Initiative

