Contact
Meeting future computing needs requires new materials and phenomena that can overcome barriers to current technologies that are approaching their fundamental limits. Today’s microelectronics use the electron’s charge to encode and manipulate information, but the electron’s spin degree of freedom is emerging as a source of untapped potential for low-power, high-performance computing.
Following the same paradigm shift that integrated circuits has brought to microelectronics, photonic integration is starting to transform almost every aspects of optics by enabling chip-scale microphotonic systems with performances rivaling their conventional bulk counterparts. New materials, device architectures and system integration approaches combined are defining and expediting the upcoming microphotonic revolution.
The design, testing, and processing of metals is becoming increasingly driven by computation and automation—for instance, gaps in physical models are addressed by machine learning, and additive manufacturing is crossing from prototyping to production. These developments foreshadow a digital transformation in the manufacturing of metal components and structures, optimizing performance across scales, from atoms to meters.